Friday, October 29, 2010
Saturday, August 22, 2009
Global Positioning System

Since it became fully operational on April 27, 1995, GPS has become a widely used aid to navigation worldwide, and a useful tool for map-making, land surveying, commerce, scientific uses, tracking and surveillance, and hobbies such as geocaching. Also, the precise time reference is used in many applications including the scientific study of earthquakes and as a required time synchronization method for cellular network protocols such as the IS-95 standard for CDMA.
Basic concept of GPS
A GPS receiver calculates its position by precisely timing the signals sent by the GPS satellites high above the Earth. Each satellite continually transmits messages which include
- the time the message was sent
- precise orbital information (the ephemeris)
- the general system health and rough orbits of all GPS satellites (the almanac).
The receiver measures the transit time of each message and computes the distance to each satellite. Geometric trilateration is used to combine these distances with the satellites' locations to obtain the position of the receiver. This position is then displayed, perhaps with a moving map display or latitude and longitude; elevation information may be included. Many GPS units also show derived information such as direction and speed, calculated from position changes.
Three satellites might seem enough to solve for position, since space has three dimensions. However, even a very small clock error multiplied by the very large speed of light—the speed at which satellite signals propagate—results in a large positional error. Therefore receivers use four or more satellites to solve for x, y, z, and t, which is used to correct the receiver's clock. The very accurately computed time is effectively hidden by most GPS applications, which use only the location. A few specialized GPS applications do however use the time; these include time transfer, traffic signal timing, and synchronization of cell phone base stations.
Although four satellites are required for normal operation, fewer apply in special cases. If one variable is already known, a receiver can determine its position using only three satellites. (For example, a ship or plane may have known elevation.) Some GPS receivers may use additional clues or assumptions (such as reusing the last known altitude, dead reckoning, inertial navigation, or including information from the vehicle computer) to give a degraded position when fewer than four satellites are visible (see , Chapters 7 and 8 of , and ).
Position calculation introduction
To introduce the operation of a GPS receiver, this section ignores measurement errors.
A GPS receiver can use the messages from a minimum of four visible satellites to determine
- the times the messages were sent
- the satellite positions corresponding to these times.
The x, y, and z components of position, and the time sent, are designated as where the subscript i is the satellite number and has the value 1, 2, 3, or 4. Knowing the indicated time the message was received
, the GPS receiver can compute the indicated transit time,
. of the message. Assuming the message traveled at the speed of light, c, the distance traveled,
can be computed as
.
A satellite's position and distance from the receiver define a spherical surface, centred on the satellite. The position of the receiver is somewhere on this surface. Thus with four satellites, the indicated position of the GPS receiver is at or near the intersection of the surfaces of four spheres. (In the ideal case of no errors, the GPS receiver would be at a precise intersection of the four surfaces.)
If the surfaces of two spheres intersect at more than one point, they intersect in a circle. The article trilateration shows this mathematically. A figure, Two Sphere Surfaces Intersecting in a Circle, is shown below.
The intersection of a third spherical surface with the first two will be its intersection with that circle; in most cases of practical interest, this means they intersect at two points. Another figure, Surface of Sphere Intersecting a Circle (not disk) at Two Points, illustrates the intersection. The two intersections are marked with dots. Again trilateration clearly shows this mathematically.
For automobiles and other near-earth-vehicles, the correct position of the GPS receiver is the intersection closest to the earth's surface. For space vehicles, the intersection farthest from Earth may be the correct one.
The correct position for the GPS receiver is also the intersection closest to the surface of the sphere corresponding to the fourth satellite.
Correcting a GPS receiver's clock
The method of calculating position for the case of no errors has been explained. One of the most significant error sources is the GPS receiver's clock. Because of the very large value of the speed of light, c, the estimated distances from the GPS receiver to the satellites, the pseudoranges, are very sensitive to errors in the GPS receiver clock. This suggests that an extremely accurate and expensive clock is required for the GPS receiver to work. On the other hand, manufacturers prefer to build inexpensive GPS receivers for mass markets. The solution for this dilemma is based on the way sphere surfaces intersect in the GPS problem.
It is likely that the surfaces of the three spheres intersect, since the circle of intersection of the first two spheres is normally quite large, and thus the third sphere surface is likely to intersect this large circle. It is very unlikely that the surface of the sphere corresponding to the fourth satellite will intersect either of the two points of intersection of the first three, since any clock error could cause it to miss intersecting a point. However, the distance from the valid estimate of GPS receiver position to the surface of the sphere corresponding to the fourth satellite can be used to compute a clock correction. Let denote the distance from the valid estimate of GPS receiver position to the fourth satellite and let
denote the pseudorange of the fourth satellite. Let
. Note that
is the distance from the computed GPS receiver position to the surface of the sphere corresponding to the fourth satellite. Thus the quotient,
, provides an estimate of
- (correct time) - (time indicated by the receiver's on-board clock),
and the GPS receiver clock can be advanced if is positive or delayed if
is negative.
Oxygen sensor
An oxygen sensor, or lambda sensor, is an electronic device that measures the proportion of oxygen (O2) in the gas or liquid being analyzed. It was developed by Robert Bosch during the late 1960s under supervision by Dr. Günter Bauman. The original sensing element is made with a thimble-shaped zirconia ceramic coated on both the exhaust and reference sides with a thin layer of platinum and comes in both heated and unheated forms. The planar-style sensor entered the market in 1998 (also pioneered by Robert Bosch GmbH) and significantly reduced the mass of the ceramic sensing element as well as incorporating the heater within the ceramic structure. This resulted in a sensor that both started operating sooner and responded faster. The most common application is to measure the exhaust gas concentration of oxygen for internal combustion engines in automobiles and other vehicles. Divers also use a similar device to measure the partial pressure of oxygen in their breathing gas.
Scientists use oxygen sensors to measure respiration or production of oxygen and use a different approach. Oxygen sensors are used in oxygen analyzers which find a lot of use in medical applications such as anesthesia monitors, respirators and oxygen concentrators.
There are many different ways of measuring oxygen and these include technologies such as zirconia, electrochemical (also known as Galvanic), infrared, ultrasonic and very recently laser. Each method has its own advantages and disadvantages.
Automotive applications
Automotive oxygen sensors, colloquially known as O2 sensors, make modern electronic fuel injection and emission control possible. They help determine, in real time, if the air fuel ratio of a combustion engine is rich or lean. Since oxygen sensors are located in the exhaust stream, they do not directly measure the air or the fuel entering the engine. But when information from oxygen sensors is coupled with information from other sources, it can be used to indirectly determine the air-to-fuel ratio. Closed-loop feedback-controlled fuel injection varies the fuel injector output according to real-time sensor data rather than operating with a predetermined (open-loop) fuel map. In addition to enabling electronic fuel injection to work efficiently, this emissions control technique can reduce the amounts of both unburnt fuel and oxides of nitrogen from entering the atmosphere. Unburnt fuel is pollution in the form of air-borne hydrocarbons, while oxides of nitrogen (NOx gases) are a result of combustion chamber tempuratures exceeding 1300 Kelvin due to excess air in the fuel mixture and contribute to smog and acid rain. Volvo was the first automobile manufacturer to employ this technology in the late 1970s, along with the 3-way catalyst used in the catalytic converter.
The sensor does not actually measure oxygen concentration, but rather the amount of oxygen needed to completely oxidize any remaining combustibles in the exhaust gas. Rich mixture causes an oxygen demand. This demand causes a voltage to build up, due to transportation of oxygen ions through the sensor layer. Lean mixture causes low voltage, since there is an oxygen excess.
Modern spark-ignited combustion engines use oxygen sensors and catalytic converters as part of an attempt by governments working with automakers to reduce exhaust emissions. Information on oxygen concentration is sent to the engine management computer or ECU, which adjusts the amount of fuel injected into the engine to compensate for excess air or excess fuel. The ECU attempts to maintain, on average, a certain air-fuel ratio by interpreting the information it gains from the oxygen sensor. The primary goal is a compromise between power, fuel economy, and emissions, and in most cases is achieved by an air-fuel-ratio close to stoichiometric. For spark-ignition engines (such as those that burn gasoline, as opposed to diesel), the three types of emissions modern systems are concerned with are: hydrocarbons (which are released when the fuel is not burnt completely, such as when misfiring or running rich), carbon monoxide (which is the result of running slightly rich) and NOx (which dominate when the mixture is lean). Failure of these sensors, either through normal aging, the use of leaded fuels, or fuel contaminated with silicones or silicates, for example, can lead to damage of an automobile's catalytic converter and expensive repairs.
Tampering with or modifying the signal that the oxygen sensor sends to the engine computer can be detrimental to emissions control and can even damage the vehicle. When the engine is under low-load conditions (such as when accelerating very gently, or maintaining a constant speed), it is operating in "closed-loop mode." This refers to a feedback loop between the ECU and the oxygen sensor(s) in which the ECU adjusts the quantity of fuel and expects to see a resulting change in the response of the oxygen sensor. This loop forces the engine to operate both slightly lean and slightly rich on successive loops, as it attempts to maintain a mostly stoichiometric ratio on average. If modifications cause the engine to run moderately lean, there will be a slight increase in fuel economy, sometimes at the expense of increased NOx emissions, much higher exhaust gas temperatures, and sometimes a slight increase in power that can quickly turn into misfires and a drastic loss of power, as well as potential engine damage, at ultra-lean air-to-fuel ratios. If modifications cause the engine to run rich, then there will be a slight increase in power to a point (after which the engine starts flooding from too much unburned fuel), but at the cost of decreased fuel economy, and an increase in unburned hydrocarbons in the exhaust which causes overheating of the catalytic converter. Prolonged operation at rich mixtures can cause catastrophic failure of the catalytic converter (see backfire). The ECU also controls the spark engine timing along with the fuel injector pulse width, so modifications which alter the engine to operate either too lean or too rich may result in inefficient fuel consumption whenever fuel is ignited too soon or too late in the combustion cycle.
When an internal combustion engine is under high load (e.g. wide open throttle), the output of the oxygen sensor is ignored, and the ECU automatically enriches the mixture to protect the engine, as misfires under load are much more likely to cause damage. This is referred to an engine running in 'open-loop mode'. Any changes in the sensor output will be ignored in this state. In many cars (excepting some turbocharged ones), inputs from the air flow meter are also ignored, as they might otherwise lower engine performance due to the mixture being too rich or too lean, and increase the risk of engine damage due to detonation if the mixture is too lean.
Carbon monoxide detector
A carbon monoxide detector or CO detector is a device that detects the presence of the carbon monoxide (CO) in order to prevent carbon monoxide poisoning. CO is a colorless and odorless compound produced by incomplete combustion that is lethal at high concentrations. If a high concentration of CO is detected, the device sounds an alarm, giving people in the area a chance to ventilate the area or safely leave the building.
Installation
The devices, which retail for $20-$60USD and are widely available, can either be battery-operated or AC powered (with or without a battery backup). Battery lifetimes have been increasing as the technology has developed and certain battery powered devices now advertise a battery lifetime of over 6 years. All CO detectors have "test" buttons like smoke detectors.
CO detectors can be placed near the ceiling or near the floor because CO is very close to the same density as air.
Since CO is colorless, tasteless and odorless (unlike smoke from a fire), detection in a home environment is impossible without such a warning device. It is a highly toxic inhalent and attracts to the hemoglobin(in the blood stream) 200x faster than oxygen, producing inadequate amounts of oxygen traveling through the body. In North America, some state, provincial and municipal governments have statutes requiring installation of CO detectors in construction - among them, the U.S. states of Alaska, Connecticut, Florida, Georgia, Illinois, Maryland, Massachusetts, Minnesota, New Jersey, New York, Rhode Island, Texas, Vermont, Virginia, Wisconsin and West Virginia, the Canadian province of Ontario, and New York City.[4]
When carbon monoxide detectors were introduced into the market, they had a limited lifespan of 2 years. However technology developments have increased this and many now advertise up to 7 years. Newer models are designed to signal a need to be replaced after that timespan although there are many instances of detectors operating far beyond this point.[citation needed]
According to the 2005 edition of the carbon monoxide guidelines, NFPA 720 , published by the National Fire Protection Association, sections 5.1.1.1 and 5.1.1.2, all CO detectors “shall be centrally located outside of each separate sleeping area in the immediate vicinity of the bedrooms,” and each detector “shall be located on the wall, ceiling or other location as specified in the installation instructions that accompany the unit.”
Installation locations vary by manufacturer. Manufacturers’ recommendations differ to a certain degree based on research conducted with each one’s specific detector. Therefore, make sure to read the provided installation manual for each detector before installing.
CO detectors are available as stand-alone models or system-connected, monitored devices. System-connected detectors, which can be wired to either a security or fire panel, are monitored by a central station. In case the residence is empty, the residents are sleeping or occupants are already suffering from the effects of CO, the central station can be alerted to the high concentrations of CO gas and can send the proper authorities to investigate.
Sensors
Early designs were basically a white pad which would fade to a brownish or blackish colour if carbon monoxide were present. Such chemical detectors are cheap and widely available, but only give a visual warning of a problem. As carbon monoxide related deaths increased during the 1990s, audible alarms became standard.
The alarm points on carbon monoxide detectors are not a simple alarm level (as in smoke detectors) but are a concentration-time function. At lower concentrations (eg 100 parts per million) the detector will not sound an alarm for many tens of minutes. At 400 parts per million (PPM), the alarm will sound within a few minutes. This concentration-time function is intended to mimic the uptake of carbon monoxide in the body while also preventing false alarms due to relatively common sources of carbon monoxide such as cigarette smoke.
There are four types of sensors available and they vary in cost, accuracy and speed of response. All three types of sensor elements typically last up to 10 years. At least one CO detector is available which includes a battery and sensor in a replaceable module. Most CO detectors do not have replaceable sensors.
Opto-Chemical
The detector consists of a pad of a coloured chemical which changes colour upon reaction with carbon monoxide. They only provide a qualitative warning of the gas however.
Biomimetic
A biomimetic (chem-optical or gel cell) sensor works with a form of synthetic hemoglobin which darkens in the presence of CO, and lightens without it. This can either be seen directly or connected to a light sensor and alarm. Battery lifespan usually lasts 2-3 years. Device lasts on the average of about 10 years.
Electrochemical
A type of fuel cell that instead of being designed to produce power, is designed to produce a current that is precisely related to the amount of the target gas (in this case carbon monoxide) in the atmosphere. Measurement of the current gives a measure of the concentration of carbon monoxide in the atmosphere. Essentially the electrochemical cell consists of a container, 2 electrodes, connection wires and an electrolyte - typically sulphuric acid. Carbon monoxide is oxidised at one electrode to carbon dioxide whilst oxygen is consumed at the other electrode. For carbon monoxide detection, the electrochemical cell has advantages over other technologies in that it has a highly accurate and linear output to carbon monoxide concentration, requires minimal power as it is operated at room temperature, and has a long lifetime (typically commercial available cells now have lifetimes of 5 years or greater). Until recently, the cost of these cells and concerns about their long term reliability had limited uptake of this technology in the marketplace, although these concerns are now largely overcome.
Semiconductor
Thin wires of the semiconductor tin dioxide on an insulating ceramic base provide a sensor monitored by an integrated circuit. This sensing element needs to be heated to approximately 40 deg C in order to operate. Oxygen increases resistance of the tin dioxide, but carbon monoxide reduces resistance therefore by measurement of the resistance of the sensing element means a monitor can be made to trigger an alarm. The power demands of this sensor means that these devices can only be mains powered although a pulsed sensor is now available that has a limited lifetime (months) as a battery powered detector.
Device usually lasts on the average of 5-10 years.
Digital
Although all home detectors use an audible alarm signal as the primary indicator, some versions also offer a digital readout of the CO concentration, in parts per million. Typically, they can display both the current reading and a peak reading from memory of the highest level measured over a period of time. These advanced models cost somewhat more but are otherwise similar to the basic models.
The digital models offer the advantage of being able to observe levels that are below the alarm threshold, learn about levels that may have occurred during an absence, and assess the degree of hazard if the alarm sounds. They may also aid emergency responders in evaluating the level of past or ongoing exposure or danger.
Wireless
Wireless home safety solutions are available that link carbon monoxide detectors to vibrating pillow pads, strobes or a remote warning handset. This allows those with impediments such as hard of hearing, partially sighted, heavy sleepers or the infirm the precious minutes to wake up and get out in the event of carbon monoxide in their property.
Legislation
House builders in Colorado will be required to install carbon monoxide detectors in new homes in a bill signed into law in March 2009 by the state legislature.
House Bill 1091 requires installation of the detectors in new and resold homes near bedrooms as well as rented apartments and homes. It takes effect from July 1, 2009. The legislation was introduced after the death of Denver investment banker Parker Lofgren and his family. Lofgren, 39; his wife Caroline, 42; and their children, Owen, 10, and Sophie, 8, were found dead in a multimillion-dollar home near Aspen, colorado on Nov. 27, 2008, victims of carbon-monoxide poisoning.
Manufacturers
- System Sensor
- DuPont
- First Alert
- Kidde
- KWJ Engineering, Inc.
- Sprue Aegis
- Duomo (UK) Ltd.
Carbon dioxide sensor
Nondispersive Infrared (NDIR) CO2 Sensors
NDIR sensors are spectroscopic sensors to detect CO2 in a gaseous environment by its characteristic absorption. The key components are an infrared source, a light tube, an interference (wavelength) filter, and an infrared detector. The gas is pumped or diffuses into the light tube, and the electronics measures the absorption of the characteristic wavelength of light. NDIR sensors are most often used for measuring carbon dioxide. The best of these have sensitivities of 20-50 PPM. Typical NDIR sensors are still in the (US) $100 to $1000 range. Most are used for carbon dioxide, because no other sensing method works reliably for this gas. New developments include using MEMS to bring down the costs of this sensor and to create smaller devices (for example for use in air conditioning
Chemical CO2 Sensors
Chemical CO2 gas sensors with sensitive layers based on polymer- or heteropolysiloxane have the principal advantage of a very low energy consumption and can be reduced in size to fit into microelectronic-based systems. On the downside, short- and long term drift effects as well as a rather low overall lifetime are major obstacles when compared with the NDIR measurement principle.
Applications
- Since the danger of fires comes mostly from its quickly spreading CO2 output, these sensors can be used to detect fire and certain other air related problems safely without false alarm.
- For air conditioning applications these kind of sensors can be used to monitor the quality of air and the tailored need of fresh air, respectively.
- In applications where direct temperature measurement is not applicable NDIR sensors can be used. The sensors absorb ambient infrared radiation (IR) given off by a heated surface.
Throttle position sensor
The sensor is usually a potentiometer, and therefore provides a variable resistance dependent upon the position of the valve (and hence throttle position).
The sensor signal is used by the engine control unit (ECU) as an input to its control system. The ignition timing and fuel injection timing (and potentially other parameters) are altered depending upon the position of the throttle, and also depending on the rate of change of that position. For example, in fuel injected engines, in order to avoid stalling, extra fuel may be injected if the throttle is opened rapidly (mimicking the accelerator pump of carburetor systems).
More advanced forms of the sensor are also used, for example an extra closed throttle position sensor (CTPS) may be employed to indicate that the throttle is completely closed.
Some ECUs also control the throttle position and if that is done the position sensor is utilised in a feedback loop to enable that control.
Related to the TPS are accelerator pedal sensors, which often include a wide open throttle (WOT) sensor. The accelerator pedal sensors are used in "drive by wire" systems, and the most common use of a wide open throttle sensor is for the kickdown function on automatic transmissions.
Modern day sensors are Non Contact type, wherein a Magnet and a Hall Sensor is used. In the potentiometric type sensors, two metal parts are in contact with each other, while the butterfly valve is turned from zero to WOT, there is a change in the resistance and this change in resistance is given as the input to the ECU.
Non Contact type TPS work on the principle of Hall Effect, wherein the magnet is the dynamic part which mounted on the butterfly valve spindle and the hall sensor is mounted with the body and is stationary. When the magnet mounted on the spindle which is rotated from zero to WOT, there is a change in the magnetic field for the hall sensor. The change in the magnetic field is sensed by the hall sensor and the hall voltage generated is given as the input to the ECU. Normally a two pole magnet is used for TPS and the magnet may be of Diametrical type or Ring type or segment type, however the magnet is defined to have a certain magnetic field.
Speedometer
A speedometer is a device that measures the instantaneous speed of a land vehicle.Now universally fitted to motor vehicles, they started to be available as options in the 1900s, and as standard equipment from about 1910 onwards.
Speedometers for other vehicles have specific names and use other means of sensing speed. For a boat, this is a pit log. For an aircraft, this is an airspeed indicator.
The speedometer was invented by the Croatian Josip Belušić in 1888, and was originally called a velocimeter.
Operation
Eddy current
The eddy-current speedometer has been used for over a century and is still in widespread use. Until the 1980s and the appearance of electronic speedometers it was the only type commonly used.
Originally patented by a German, Otto Schulze on 7 October 1902, it uses a rotating flexible cable usually driven by gearing linked to the tail shaft (output) of the vehicle's transmission. The early Volkswagen Beetle and many motorcycles, however, use a cable driven from a front wheel.
A small permanent magnet affixed to the rotating cable interacts with a small aluminum cup (called a speedcup) attached to the shaft of the pointer on the analogue instrument. As the magnet rotates near the cup, the changing magnetic field produces eddy currents in the cup, which themselves produce another magnetic field. The effect is that the magnet "drags" the cup, and thus the speedometer pointer, in the direction of its rotation with no mechanical connection between them.
The pointer shaft is held toward zero by a fine spring. The torque on the cup increases with the speed of rotation of the magnet (which, recall, is driven by the car's transmission.) Thus an increase in the speed of the car will twist the cup and speedometer pointer against the spring. When the torque due to the eddy currents in the cup equals that provided by the spring on the pointer shaft, the pointer will remain motionless and pointing to the appropriate number on the speedometer's dial.
The return spring is calibrated such that a given revolution speed of the cable corresponds to a specific speed indication on the speedometer. This calibration must take into account several factors, including ratios of the tailshaft gears that drive the flexible cable, the final drive ratio in the differential, and the diameter of the driven tires.
Electronic
Many modern speedometers are electronic. A rotation sensor, usually mounted on the rear of the transmission, delivers a series of electronic pulses whose frequency corresponds to the rotational speed of the driveshaft. The sensor is typically a toothed metal disk positioned between a coil and a magnetic field sensor. As the disk turns, the teeth pass between the two, each time producing a pulse in the sensor as they affect the strength of the magnetic field it is measuring.
A computer converts the pulses to a speed and displays this speed on an electronically-controlled, analog-style needle or a digital display. Pulse counts may also be used to increment the odometer.
Another early form of electronic speedometer relies upon the interaction between a precision watch mechanism and a mechanical pulsator driven by the car's wheel or transmission. The watch mechanism endeavors to push the speedometer pointer toward zero, while the vehicle-driven pulsator tries to push it toward infinity. The position of the speedometer pointer reflects the relative magnitudes of the outputs of the two mechanisms.